

NIMONIC\* alloy 263 (UNS N07263/W. Nr. 2.4650), an air melted nickel-base alloy, was developed by Rolls-Royce (1971) Ltd. to provide a sheet material which could be readily fabricated and would offer improved ductility in welded assemblies to replace NIMONIC alloy 80A.

It was designed as sheet material to meet specific design criteria in terms of proof stress and creep strength. It is now available in all standard forms.

The welding techniques for this alloy are similar to those in common use for other age-hardenable nickelbase alloys. During salvage welding operations, a preweld heat-treatment is not necessary on age-hardened assemblies but a subsequent age-hardening treatment is desirable after all salvage welding is completed. Material will age in service if temperatures are above 750°C.

## Composition, %

The composition in BS HR 10 is as follows:

| Carbon                | 0.04-0.08   |
|-----------------------|-------------|
| Silicon               | 0.40 max.   |
| Manganese             | 0.60 max.   |
| Sulfur                | 0.007 max.  |
| Silver                | 0.0005 max. |
| Aluminum              | 0.60 max.   |
| Boron                 | 0.005 max.  |
| Bismuth               | 0.0001 max. |
| Cobalt                | 19.0-21.0   |
| Chromium              | 19.0-21.0   |
| Copper                | 0.20 max.   |
| Iron                  |             |
| Molybdenum            | 5.6-6.1     |
| Lead                  |             |
| Titanium              | 1.9-2.4     |
| Aluminum and titanium | 2.4-2.8     |
| Nickel                | Balance*    |
|                       |             |

<sup>\*</sup>Reference to the 'balance' of an alloy's composition does not guarantee this is exclusively of the element mentioned, but that it predominates and others are present only in minimal quantities.

### **Heat Treatment**

NIMONIC alloy 263 is normally given a two-stage heat-treatment, that is, solution treatment and age hardening prior to service. This heat treatment is normally carried out in air. Material is usually supplied in the solution-treated condition and aged by the customer as part of the fabrication process. Material can however be supplied to any requested heat treatment condition. Details of recommended heat-treatments for various forms are given below, where the time at solution treatment temperature depends on section thickness.

| Form                                                                       | orm Solution<br>Treatment     |              |
|----------------------------------------------------------------------------|-------------------------------|--------------|
| Extruded or forged<br>bars and section<br>for forging and /or<br>machining | 1½-2½ h/1150°C/WQ             | 8 h/800°C/AC |
| Hot-rolled sheet                                                           | ½ h/1150°C/WQ or AC           | 8 h/800°C/AC |
| Cold-rolled sheet<br>and cold-drawn<br>section (including<br>tube)         | 3-10 min/1150°C/<br>FBQ or WQ | 8 h/800°C/AC |

Cooling for hot-rolled sheet from solution treatment temperature may be by water quenching (WQ) or by air cooling (AC); the former is recommended. For cold-worked products, especially sheet, fluidized bed quenching (FBQ) produces less distortion than water quenching without any appreciable change of properties.

The solution treatment temperature of 1150°C yields a compromise between tensile and creep strengths, coupled with good ductility values in both cases.

Interstage annealing to remove residual cold-work is normally applied during manipulation operations. The treatment recommended for sheet is 15 min/1050-1100°C/WQ or AC

Welding operations should be carried out with the material in the solution-treated condition. An 8 h/800°/AC aging treatment can be applied to the welded component. Details of welding practice are given subsequently under 'Fabrication'.



## **Physical Properties**

| Density, g/cm <sup>3</sup> | 8.36 |
|----------------------------|------|
| lb/in <sup>3</sup>         |      |
| Melting Range              |      |
| Liquidus temperature, °C   | 1355 |
| Solidus temperature, °C    | 1300 |
| Specific Heat, J/kg, °C    | 461  |
|                            |      |

## Density

The density values are the mean of 24 determinations on sheet and forged material. No significant difference in density between annealed and fully heat-treated sheet was detected. Compositional variation within the release specification was reflected in a density range of 8.33 to 8.39 g/cm<sup>3</sup>.

## Melting Range

The liquidus temperature was determined by inverse cooling and the solidus by metallographic examination. The accuracy of determination was  $\pm 5^{\circ}$ C for the liquidus temperature, and  $\pm 0$ ,  $\pm 10^{\circ}$ C for the solidus temperature.

## Specific Heat

Approximately 461 J/kg °C in the range 20-100°C.

Table 1 - Thermal Conductivity

| °C   | W/m•°C |
|------|--------|
| 20   | 11.72  |
| 100  | 12.98  |
| 200  | 14.65  |
| 300  | 16.33  |
| 400  | 18.00  |
| 500  | 19.68  |
| 600  | 21.35  |
| 700  | 23.03  |
| 800  | 24.70  |
| 900  | 26.80  |
| 1000 | 28.47  |

These values have been calculated from electrical resistance measurements on a single fully heat-treated sheet specimen using modified Wiedemann-Franz equations.

**Table 2** - Mean Coefficient of Linear Thermal Expansion, 10<sup>-6</sup>/°C

| .€      | Average data<br>for<br>extruded bar | for for billet slices |      |
|---------|-------------------------------------|-----------------------|------|
| 20-100  | 10.3                                | 10.2                  | 11.0 |
| 20-200  | 11.9                                | 12.1                  | 12.1 |
| 20-300  | 12.5                                | 12.8                  | 12.6 |
| 20-400  | 13.1                                | 13.3                  | 13.0 |
| 20-500  | 13.6                                | 13.9                  | 13.4 |
| 20-600  | 14.2                                | 14.5                  | 13.9 |
| 20-700  | 15.2                                | 15.7                  | 14.6 |
| 20-800  | 16.2                                | 16.7                  | 15.3 |
| 20-900  | 17.9                                | 18.3                  | 16.5 |
| 20-1000 | 18.9                                | 19.3                  | 17.4 |

Table 3 - Electrical Properties

| Electrical Resistivity at 20°C = 115 microhm •cm |                     |  |  |  |
|--------------------------------------------------|---------------------|--|--|--|
| °C                                               | Relative Resistance |  |  |  |
| 20                                               | 1.000               |  |  |  |
| 100                                              | 1.013               |  |  |  |
| 200                                              | 1.030               |  |  |  |
| 300                                              | 1.046               |  |  |  |
| 400                                              | 1.062               |  |  |  |
| 500                                              | 1.078               |  |  |  |
| 600                                              | 1.094               |  |  |  |
| 700                                              | 1.098               |  |  |  |
| 800                                              | 1.087               |  |  |  |
| 900                                              | 1.078               |  |  |  |
| 1000                                             | 1.081               |  |  |  |

Table 4 - Magnetic Properties

| Heat-treatment condition | Permeability µ at 0.02 T to 0.3 T |
|--------------------------|-----------------------------------|
| Annealed                 | 1.000745                          |
| Fully heat-treated       | 1.000765                          |

No change in permeability with field strength was detected; neither was the permeability significantly influenced by sample orientation with respect to rolling direction.

## Dynamic Moduli

The dynamic Young's modulus data (Table 5) were obtained on cylindrical specimens from extruded and forged sections and on sheet specimens. Both forms of sample were tested in the fully heat-treated condition and vibrated in the flexural mode.

## **Tensile Properties**

The data given in Table 6 and presented graphically in Figure 1 are for extruded section, subsequently forged, and given the recommended heat treatment. The data given in Table 7, and presented graphically in Figure 2 are for cold-rolled sheet 0.7 to 1.2 mm thick given the recommended heat treatment. Tensile properties at 780°C for plain and welded cold-rolled sheet 1.2 and 0.9 mm thick are compared in Table 8. The data represent the statistical analyses of routine release tests on 100 casts produced as 1.2 and 0.9 mm sheet. The welding of test specimens was carried out between the first and second stages of the heat treatment.

Table 5 - Dynamic Moduli, GPa

| °C   | Dynamic Young's modulus  Extruded and forged section Sheet |     | Dynamic<br>torsional<br>modulus |
|------|------------------------------------------------------------|-----|---------------------------------|
| C    |                                                            |     | Sheet                           |
| 20   | 224                                                        | 221 | 86                              |
| 100  | 219                                                        | 219 | 84                              |
| 200  | 213 212                                                    |     | 81                              |
| 300  | 206 205                                                    |     | 79                              |
| 400  | 199 198                                                    |     | 76                              |
| 500  | 192                                                        | 162 | 73                              |
| 600  | 185 185                                                    |     | 70                              |
| 700  | 175 177                                                    |     | 66                              |
| 800  | 163 168                                                    |     | 62                              |
| 900  | 154 154                                                    |     | 57                              |
| 1000 | 142                                                        | 143 | 52                              |

Table 6 - Tensile Properties of Bar

| °C   | 0.2% Proof Stress<br>MPa | Tensile Strength<br>MPa | Elongation on 5.65 √So, % | Reduction of Area<br>% |
|------|--------------------------|-------------------------|---------------------------|------------------------|
| 20   | 585                      | 1004                    | 45                        | 41                     |
| 100  | 550                      | 958                     | 44                        | 44                     |
| 200  | 520                      | 911                     | 44                        | 47                     |
| 300  | 505                      | 880                     | 45                        | 50                     |
| 400  | 490                      | 849                     | 46                        | 51                     |
| 500  | 500                      | 834                     | 46                        | 52                     |
| 600  | 490                      | 819                     | 43                        | 50                     |
| 700  | 495                      | 772                     | 27                        | 34                     |
| 800  | 460                      | 587                     | 15                        | 26                     |
| 900  | 145                      | 232                     | 34                        | 58                     |
| 1000 | 70                       | 108                     | 69                        | 72                     |

Strain rate 0.005/min to proof stress (at room temperature) and 0.002/min to proof stress (at elevated temperatures) and 0.01/min thereafter.

## Tensile Properties (continued)

Table 7 - Tensile Properties of Sheet

| Heat treatment 3-10 min/1150°C/FE | Q or WQ + 8 h/800°C/AC   |                         |                       |
|-----------------------------------|--------------------------|-------------------------|-----------------------|
| °C                                | 0.2% Proof Stress<br>MPa | Tensile Strength<br>MPa | Elongation on 50 mm % |
| 20                                | 580                      | 973                     | 39                    |
| 100                               | 515                      | 896                     | 40                    |
| 200                               | 500                      | 849                     | 41                    |
| 300                               | 475                      | 834                     | 42                    |
| 400                               | 470                      | 816                     | 43                    |
| 500                               | 490                      | 803                     | 43                    |
| 600                               | 490                      | 788                     | 41                    |
| 700                               | 475                      | 757                     | 23                    |
| 800                               | 440                      | 556                     | 20                    |
| 900                               | 135                      | 201                     | 49                    |
| 1000                              | 70                       | 108                     | 65                    |

Strain rate 0.005/min to proof stress (at room temperature) and 0.002/min to proof stress (at elevated temperatures) and 0.01/min thereafter.

Table 8 - Tensile Properties of Plain and Welded Sheet

Routine release data at 780°C for 1.2 and 0.9 mm cold-rolled sheet, Heat treatment 5 min/1150°C/AC + weld + 8 h/800°C/AC

|                                                                          | Plain                                      | Sheet | Argon-arc autogenously butt welded sheet |                             |  |
|--------------------------------------------------------------------------|--------------------------------------------|-------|------------------------------------------|-----------------------------|--|
| Parameter                                                                | Tensile Strength MPa Elongation on 25 mm % |       | Tensile Strength<br>MPa                  | Elongation<br>on 25 mm<br>% |  |
| Mean                                                                     | 632                                        | 24.0  | 629                                      | 11.7                        |  |
| Standard deviation                                                       | 23                                         | 6.5   | 23                                       | 4.6                         |  |
| Minimum<br>requirements<br>of Rolls-Royce<br>Specification<br>MSRR. 7036 | 541                                        | 9     | 463                                      | 5                           |  |

Strain rate 0.002/min to proof stress and 0.1/min thereafter.

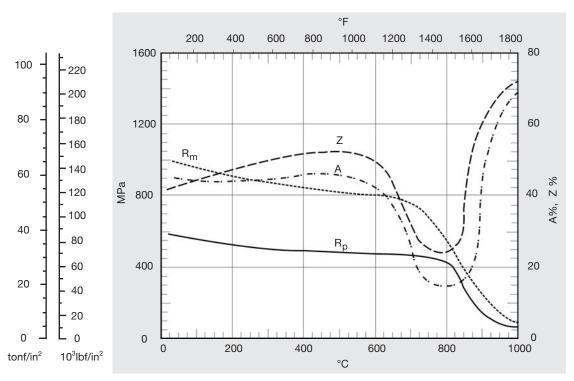
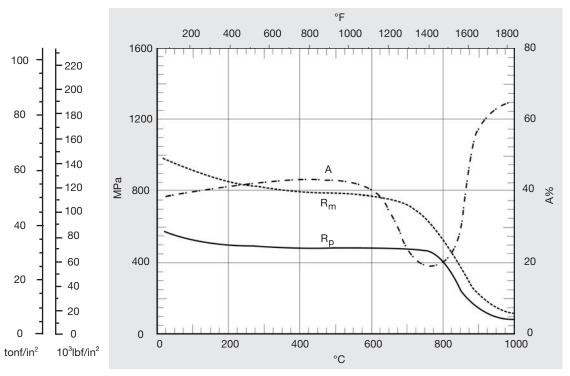




Figure 1. Tensile properties of bar. Heat treatment  $2h/1150^{\circ}C/WQ + 8h/800^{\circ}C/AC$ A= Elongation R<sub>m</sub>= Tensile Strength R<sub>p</sub>= 0.2% Proof Stress Z= Reduction of Area



 $\textbf{Figure 2.} \ \, \textbf{Tensile properties of sheet.} \ \, \textbf{Heat treatment 3-10 min/1150°C/FBQ or WQ + 8h/800°C/AC} \\$ 

A= Elongation  $R_m$ = Tensile Strength  $R_p$ = 0.2% Proof Stress Z= Reduction of Area

## NIMONIC® alloy 263

## **Creep Properties**

#### Bar

Creep-rupture curves for bar given the recommended 2 h/1150°C/WQ + 8h/800°C/AC heat treatment are presented by Larson-Miller parameter in Figure 3. Derived creep-rupture properties of extruded section are shown in Table 9.

Total plastic strain data obtained on extruded section after the recommended heat treatment are given in Table 10. Stresses in the region of or above proof stress have been omitted since under these conditions the creep characteristics are markedly influenced by the method of applying the stress and the amount of strain on loading.

 Table 9 - Creep-Rupture Properties of Extruded Section

| Heat treatment 2 h/1150°C/WQ + 8 h/800°C/AC |                                 |     |     |     |       |  |
|---------------------------------------------|---------------------------------|-----|-----|-----|-------|--|
| °C                                          | Stress, MPa, to give rupture in |     |     |     |       |  |
| U                                           | 30 h 100 h 300 h 1000 h 3000 h  |     |     |     |       |  |
| 550                                         | (726)                           | 695 | 680 | 633 | (587) |  |
| 600                                         | 641                             | 618 | 595 | 556 | (510) |  |
| 650                                         | 479                             | 541 | 510 | 471 | (432) |  |
| 700                                         | 510                             | 448 | 386 | 317 | (263) |  |
| 750                                         | 378                             | 317 | 263 | 224 | (178) |  |
| 800                                         | 263                             | 216 | 178 | 142 | (116) |  |
| 850                                         | 165                             | 133 | 103 | 77  | (59)  |  |
| 900                                         | 86                              | 74  | 54  | 42  | (34)  |  |

Values in parentheses are extrapolated from isothermal curves.

#### Sheet

Creep-rupture curves for fully heat-treated cold-rolled sheet are presented by Larson-Miller parameter in Figure 4. Derived creep-rupture properties of cold-rolled sheet are also shown in Table 11, where two sets of data were obtained from different casts. One cast was used for the 500 to 700°C data, and another for the 700 to 900°C data. For comparison, therefore, both sets of data are given at 700°C.

Preliminary total plastic strain data for 1.6 mm sheet, heat-treated 3 min/1190°C/FBQ + 8 h/800°C/AC, are given in Table 12. Again stresses in the region of or above proof stress have been omitted. Reducing the initial heat-treatment temperature from 1190°C to 1150°C would not cause a significant difference in total plastic strain.

Tests on autogenously welded sheet have shown that very similar creep-rupture strengths are obtained. Sheet welded by other than the autogenous process may show properties affected by the method of welding used.

Table 10 - Total Plastic Strain Data for Extruded Section

| ℃   | Strain | Stress, MPa, to give total plastic strain in |       |       |       |        |  |
|-----|--------|----------------------------------------------|-------|-------|-------|--------|--|
|     | %      | 50 h                                         | 100 h | 300 h | 500 h | 1000 h |  |
| 700 | 0.1    | (432)                                        | 386   | 324   | 301   | 270    |  |
|     | 0.2    | _                                            | 417   | 347   | 324   | 286    |  |
|     | 0.5    | _                                            | 432   | 371   | 340   | 309    |  |
|     | 1.0    | _                                            | _     | 386   | 355   | 317    |  |
| 750 | 0.1    | 301                                          | 263   | 216   | 201   | 178    |  |
|     | 0.2    | 317                                          | 278   | 232   | 208   | 185    |  |
|     | 0.5    | 340                                          | 293   | 247   | 224   | 201    |  |
|     | 1.0    | 355                                          | 309   | 263   | 239   | 208    |  |
| 800 | 0.1    | 178                                          | 162   | 136   | 125   | 110    |  |
|     | 0.2    | 193                                          | 170   | 144   | 133   | 116    |  |
|     | 0.5    | 208                                          | 185   | 153   | 139   | 124    |  |
|     | 1.0    | 216                                          | 193   | 162   | 147   | 130    |  |
| 850 | 0.1    | 102                                          | 93    | 69    | 57    | 48     |  |
|     | 0.2    | 111                                          | 99    | 77    | 68    | 52     |  |
|     | 0.5    | 117                                          | 105   | 85    | 73    | 59     |  |
|     | 1.0    | 127                                          | 113   | 93    | 77    | 63     |  |
| 900 | 0.1    | 51                                           | 45    | 37    | (31)  | (25)   |  |
|     | 0.2    | 54                                           | 48    | 39    | (34)  | (26)   |  |
|     | 0.5    | 59                                           | 51    | 42    | 37    | (29)   |  |
|     | 1.0    | 63                                           | 56    | 45    | 40    | (32)   |  |

Values in parentheses are extrapolated from isothermal curves.

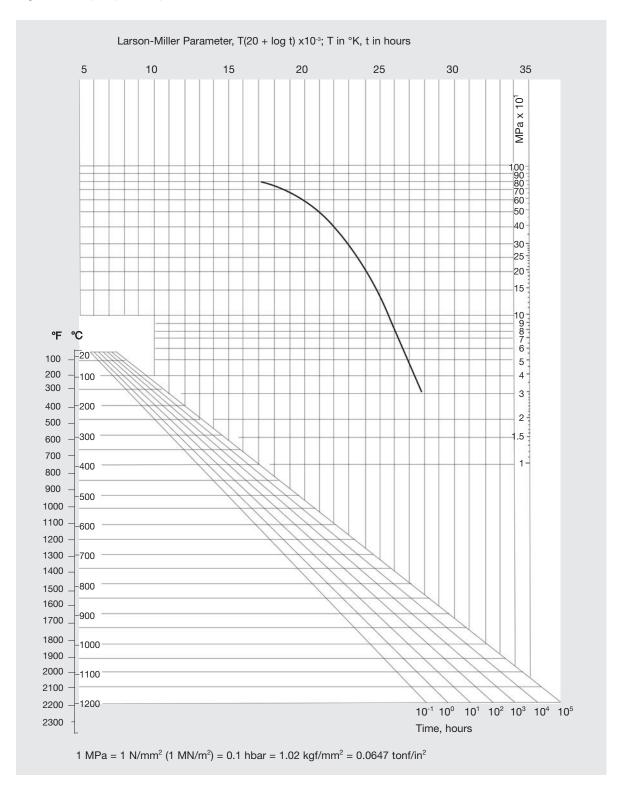



Figure 3 - Creep-Rupture Properties of bar. Heat treatment 2h/1150°C/WQ +8 h/800°C/AC

Figure 4 - Creep-Rupture Properties of Sheet. Heat treatment 3-10 mins/1150°C/FBQ or WQ+8 h/800°C/AC

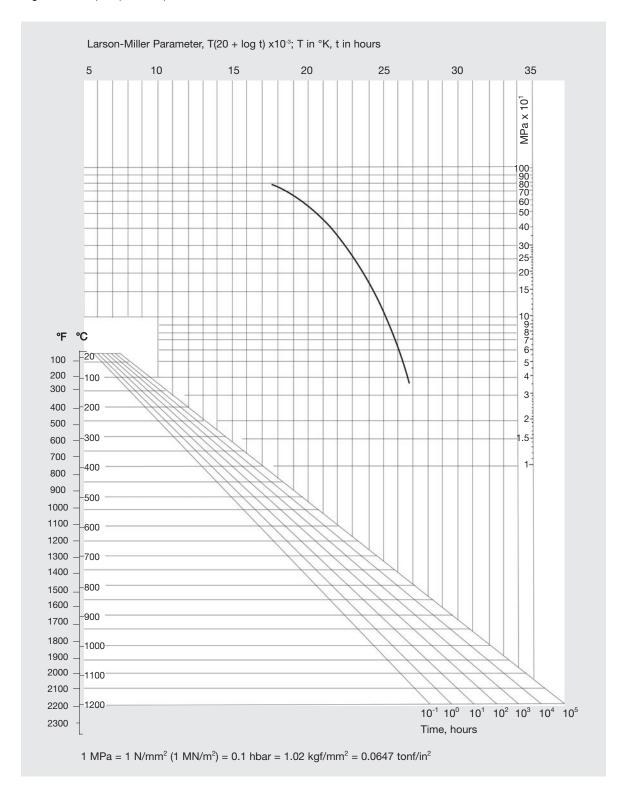



Table 11 - Creep-Rupture Properties of Cold-Rolled Sheet

#### Heat treatment 3-10 min/1150°C/FBQ or WQ + 8 h/800°C/AC Stress, MPa, to give rupture in °C 100 h 300 h 1000 h 3000 h 5000 h 30 h (641)(533)(378)700\* (247)700\* <31 <31

Values in parentheses are extrapolated from isothermal curves.

Table 12 - Total Plastic Strain Data for Cold-Rolled Sheet

| Heat-treatment: 3 min/1190°C/FBQ + 8 h/800°C/AC |             |                                              |       |       |        |        |        |  |
|-------------------------------------------------|-------------|----------------------------------------------|-------|-------|--------|--------|--------|--|
| °C                                              | Strain<br>% | Stress, MPa, to give total plastic strain in |       |       |        |        |        |  |
|                                                 |             | 50 h                                         | 100 h | 300 h | 1000 h | 3000 h | 5000 h |  |
| 700                                             | 0.2         | 363                                          | 332   | 278   | 224    | 178    | 159    |  |
|                                                 | 0.5         | 409                                          | 371   | 317   | 255    | 208    | 185    |  |
| 750                                             | 0.2         | 239                                          | 208   | 178   | 142    | 113    | 97     |  |
|                                                 | 0.5         | 278                                          | 247   | 198   | 154    | 128    | 108    |  |
| 800                                             | 0.2         | 147                                          | 130   | 102   | 80     | 60     | 54     |  |
|                                                 | 0.5         | 165                                          | 145   | 119   | 91     | 68     | 60     |  |
| 850                                             | 0.2         | 80                                           | 69    | 54    | 40     | _      | _      |  |
|                                                 | 0.5         | 96                                           | 83    | 65    | 49     | 36     | _      |  |
| 900                                             | 0.2         | 40                                           | 34    | <31   | <31    | <31    | <31    |  |
|                                                 | 0.5         | 46                                           | 40    | <31   | <31    | <31    | <31    |  |

## Impact Data

The room temperature Charpy impact strength of extruded and forged section given the recommended heat treatment of  $2 \text{ h/1150}^{\circ}\text{C/WQ} + 8 \text{ h/800}^{\circ}\text{C/AC}$  is in the region of 111 J.

Long term embrittlement has been investigated by room and elevated temperature Chargy impact testing of extruded and forged section given the recommended heat treatment. The data given in Tables 13 and 14 represent the findings of these investigations and in general show the results of duplicate tests.

Table 13 - Impact Values, J, at Room Temperature

| Soaking<br>time | Soaking temperature, °C |       |       |       |         |  |
|-----------------|-------------------------|-------|-------|-------|---------|--|
| h               | 600                     | 700   | 750   | 800   | 900     |  |
| 30              | 111:103                 | 73:75 | 68:80 | 98:98 | 190:176 |  |
| 100             | 88:92                   | 54:58 | 65:56 | 87:79 | 160:165 |  |
| 300             | 87:100                  | 34:30 | 41:43 | 58:52 | 108:119 |  |
| 1000            | 71: 71                  | 27:33 | 24:22 | 62:57 | 56: 60  |  |
| 3000            | 98: 81                  | 12:14 | 24:35 | 39:35 | 46: 53  |  |
| 10 000          | 27: 26                  | 9:11  | 26:22 | 34:33 | 45: 45  |  |

Table 14 - Impact Values, J, at Elevated Temperatures

| Soaking<br>time | Soaking and test temperature, °C |         |         |         |  |  |
|-----------------|----------------------------------|---------|---------|---------|--|--|
| h               | 600                              | 750     | 800     | 900     |  |  |
| 30              | 157:150                          | 100:100 | 125:114 | 172:174 |  |  |
| 100             | 146:130                          | 96:92   | 114:100 | 180:160 |  |  |
| 300             | 160:156                          | 81:85   | 91:104  | 141:145 |  |  |
| 1000            | 108:114                          | 71:69   | 87:79   | 123:119 |  |  |
| 3000            | 152:114                          | 73:52   | 79:83   | 111:106 |  |  |
| 10 000          | 65:64                            | 42:39   | 72:71   | 110:107 |  |  |

<sup>\*</sup>Two different casts, see text.

### **Fabrication**

## **Hot Working**

NIMONIC alloy 263 may be hot worked in the temperature range 950-1150°C.

## **Cold Working**

Average mechanical properties pertinent to cold forming operations for annealed sheet 0.5 to 1.2 mm thick are given in the following table.

| 0.1% proof stress                  | 343 MPa  |  |  |
|------------------------------------|----------|--|--|
| 0.2% proof stress                  | 355 MPa  |  |  |
| 0.5% proof stress                  | 369 MPa  |  |  |
| Tensile strength                   | 788 MPa  |  |  |
| Elongation on 50 mm, %             | 59.7     |  |  |
| Hardness                           | 195 HV   |  |  |
| Mean grain size                    | ASTM 6.5 |  |  |
| Erichsen value                     | 12.8 mm  |  |  |
| Shear strength                     | 588 MPa  |  |  |
| Ratio of shear to tensile strength | 0.75     |  |  |

The above data were obtained using an anneal of 3 minutes at 1190°C followed by fluidized bed quenching. A slight overall improvement in these properties is indicated by investigations using the 1150°C heat treatment.

### **Annealing**

NIMONIC alloy 263 bar or heavy section is usually softened by a heat treatment of 2 h/1150°C/WQ, namely the first stage of the recommended two stage heat treatment for bar.

Annealing of NIMONIC alloy 263 sheet, required during manipulatory operations, should be by heating for 15 minutes in the temperature range 1050-1100°C followed by rapid cooling (water quenching for heavier sheet and air cooling for thin section sheet). Fluidized bed quenching may also be used.

## Welding

## **Argon Shielded Process**

NIMONIC alloy 263 is readily welded by automatic and manual T.I.G. processes and by M.I.G. processes. The choice of process depends on the joint configuration and on material thickness. For simple butt joints automatic T.I.G. welding can be used, with or without filler metal additions, depending on thickness. Material thinner than 1.6 mm can be welded without filler metal but above this thickness, filler metal must be added. The limiting thickness for automatic T.I.G. welding is around 3.25 mm.

For more complicated joints, or for thicker material, manual T.I.G. welding can be employed. This process can be used on all section thicknesses but the much faster M.I.G. processes are normally used for material above 4.8 mm thick particularly if a lot of welding is involved. As NIMONIC alloy 263 does not suffer from heat-affected-zone cracking, both "spray" and "dip" transfer conditions can be used when M.I.G. welding, although "dip" transfer is preferred.

The filler metal to be used for all argon-shielded welding processes is NIMONIC filler metal 263, of matching composition to the base alloy. It is available in 914 mm straight lengths at 3.3, 2.6, 2.0, 1.6, and 1.2 mm diameter for manual welding and on reels at 1.6, 1.1 and 0.9 mm diameter for automatic T.I.G. and M.I.G. welding.

The shielding gas should be either pure argon or argon plus 5% hydrogen, if the latter is preferred. On no account should argon-oxygen mixtures or carbon dioxide be used.

## Resistance Welding

Resistance spot, stitch and seam welding techniques are in regular use on NIMONIC alloy 263 components.

## Other Joining Processes

Many other joining process are available for NIMONIC alloy 263, but the choice of any one will depend on the application and the equipment available. For example, flash-butt welding is used for the manufacture of gas turbine rings, but finds little application elsewhere. In addition, high-temperature brazing, electron-beam welding and plasma-arc welding can all be used should the application warrant them. For the majority of applications argon-shielded and resistance welding techniques will suffice.

## **Available Products**

NIMONIC alloy 263 is generally available in the following forms:

bars and billets for forging
rods and bars for machining
extruded section, rectangular or profiled for machining,
rolling and welding to rings etc.
hot-rolled plate and sheet
cold-rolled sheet and strip
cold-worked tube
cold-drawn wire and filler wire

Forms not mentioned above may be supplied to order. Minimum production quantities may apply.

## **Specifications**

NIMONIC alloy 263 is designated UNS N07263/W. Nr. 2.4650 and is covered by the following Specifications:

Rod, Bar, Billet, Wire and Forgings - BS HR 10 (bar, billet, forgings & parts), AECMA PrEn 2199 & 2201 (bar), AECMA PrEn 2200 (forgings), DIN 17752 (rod & bar), DIN 17753 (wire), DIN 17754 (forgings)

**Plate**, **Sheet and Strip** - BS HR 206 (plate, sheet & strip), AECMA PrEn 2203 (sheet & strip), AECMA PrEn 2418 (plate), DIN 17750 (plate, sheet & strip), SAE AMS 5872 (plate, sheet & strip)

Pipe and Tube - BS HR 404 (seamless tube), AECMA PrEn 2202 (tube), DIN 17751 (pipe and tube)

Composition - DIN 17744

Publication Number SMC-054 Copyright © Special Metals Corporation, 2004 (Sept 04)

NIMONIC is a trademark of the Special Metals Corporation group of companies.

The data contained in this publication is for informational purposes only and may be revised at any time without prior notice. The data is believed to be accurate and reliable, but Special Metals makes no representation or warranty of any kind (express or implied) and assumes no liability with respect to the accuracy or completeness of the information contained herein. Although the data is believed to be representative of the product, the actual characteristics or performance of the product may vary from what is shown in this publication. Nothing contained in this publication should be construed as guaranteeing the product for a particular use or application.



### www.specialmetals.com

















## U.S.A. Special Metals Corporation

# Billet, rod & bar, flat & tubular products

3200 Riverside Drive Huntington, WV 25705-1771 Phone +1 (304) 526-5100 +1 (800) 334-4626 Fax +1 (304) 526-5643

#### Billet & bar products

4317 Middle Settlement Road New Hartford, NY 13413-5392 Phone +1 (315) 798-2900 +1 (800) 334-8351 Fax +1 (315)798-2016

#### Atomized powder products

100 Industry Lane Princeton, KY 42445 Phone +1 (270) 365-9551 Fax +1 (270) 365-5910

#### **Shape Memory Alloys**

4317 Middle Settlement Road New Hartford, NY 13413-5392 Phone +1 (315) 798-2939 Fax +1 (315) 798-6860

#### **United Kingdom**

#### Special Metals Wiggin Ltd.

Holmer Road Hereford HR4 9SL Phone +44 (0) 1432 382200 Fax +44 (0) 1432 264030

### **Special Metals Wire Products**

Holmer Road Hereford HR4 9SL Phone +44 (0) 1432 382556 Fax +44 (0) 1432 352984

#### China

#### Special Metals Pacific Pte. Ltd.

Room 1802, Plaza 66 1266 West Nanjing Road Shanghai 200040 Phone +86 21 3229 0011 Fax +86 21 6288 1811

#### Special Metals Pacific Pte. Ltd.

Room 910, Ke Lun Mansion 12A Guanghua Road Chaoyang District Beijing 100020 Phone +86 10 6581 8396 Fax +86 10 6581 8381

#### France

#### **Special Metals Services SA** 17 Rue des Frères Lumière

69680 Chassieu (Lyon) Phone +33 (0) 4 72 47 46 46 Fax +33 (0) 4 72 47 46 59

#### Germany

#### Special Metals Deutschland Ltd.

Postfach 20 04 09 40102 Düsseldorf Phone +49 (0) 211 38 63 40 Fax +49 (0) 211 37 98 64

#### **Hong Kong**

#### Special Metals Pacific Pte. Ltd.

Unit A, 17th Floor, On Hing Bldg 1 On Hing Terrace Central, Hong Kong Phone +852 2439 9336 Fax +852 2530 4511

#### India

#### Special Metals Services Ltd.

No. 60, First Main Road, First Block Vasantha Vallabha Nagar Subramanyapura Post Bangalore 560 061

Phone +91 (0) 80 2666 9159 Fax +91 (0) 80 2666 8918

#### Italy

#### Special Metals Services SpA

Via Assunta 59 20054 Nova Milanese (MI) Phone +390 362 4941 Fax +390 362 494224

#### The Netherlands

#### Special Metals Service BV Postbus 8681

3009 AR Rotterdam
Phone +31 (0) 10 451 44 55
Fax +31 (0) 10 450 05 39

#### Singapore

#### Special Metals Pacific Pte. Ltd.

24 Raffles Place #27-04 Clifford Centre Singapore 048621 Phone +65 6532 3823 Fax +65 6532 3621

#### **Affiliated Companies**

## **Special Metals Welding Products**

1401 Burris Road Newton, NC 28658, U.S.A. Phone +1 (828) 465-0352 +1 (800) 624-3411 Fax +1 (828) 464-8993

Canada House Bidavon Industrial Estate Waterloo Road Bidford-On-Avon Warwickshire B50 4JN, U.K.

Phone +44 (0) 1789 491780 Fax +44 (0) 1789 491781

#### **Controlled Products Group**

590 Seaman Street, Stoney Creek Ontario L8E 4H1, Canada Phone +1 (905) 643-6555 Fax +1 (905) 643-6614

### A-1 Wire Tech, Inc. A Special Metals Company

4550 Kishwaukee Street Rockford, IL 61109, U.S.A. Phone +1 (815) 226-0477 +1 (800) 426-6380 Fax +1 (815) 226-0537

#### **Rescal SA**

## A Special Metals Company

200 Rue de la Couronne des Prés 78681 Epône Cédex, France Phone +33 (0) 1 30 90 04 00 Fax +33 (0) 1 30 90 02 11

#### DAIDO-SPECIAL METALS Ltd.

#### A Joint Venture Company Daido Shinagawa Building

6-35, Kohnan 1-chome Minato-ku, Tokyo 108-0057, Japan Phone +81 (0) 3 5495 7237 Fax +81 (0) 3 5495 1853